

Parallelization of FEMWATER
An Unstructured Finite Element Groundwater Model

F.T. Tracy* and J.P. Holland
US Army Engineer Waterways Experiment Station

3909 Halls Ferry Road
Vicksburg, MS 39180

I.L. Carpenter and R.W. Numrich
Silicon Graphics / Cray Research

655E Lone Oak Dr.
Eagan, MN 55121

Abstract

 When starting from scratch, it is challenging to obtain good scalability in unstructured finite element (FE)
models. It is even more difficult to parallelize older existing codes such as FEMWATER. If done the wrong way,
the results of scaled speed-up tests can be very discouraging. There are several factors that can cause poor results.
These include grid partitioning, the preparation program, boundary conditions, sparse matrix storage format, ghost
nodes, border elements, updating, solvers for linear and nonlinear equations, and data types. All these issues were
addressed in the parallelization of FEMWATER. When going from 4 to 8 PE’s, with the grid size going from
62,500 nodes to 125,000 nodes, a scaled speed-up of 95.8% was achieved on the CEWES Cray T3E for a steady-
state problem. Scaling both the grid to 1,000,000 nodes and PE’s to 64 also gave good results. A time-dependent,
unsaturated flow problem was also successfully run using 198 PE’s. The same code that runs on the Cray T3E also
runs without change on the IBM SP system. The purpose of this paper is to describe the techniques used to achieve
these results by addressing the items mentioned above and in the list. Note that only subsurface flow is discussed in
this paper. Each item will now be briefly described.

1. Grid Partitioning. Making a balanced load by using a good grid partitioning is essential to achieving efficient

scaling.

2. Preparation. The program to convert the global data into data for each processing element (PE) is very

important and with care it can be reduced to very short running times.

3. Boundary Conditions, Sparse Matrix Storage Forma, Ghost Nodes, and Border Elements. Many FE programs

apply boundary conditions at the element level, so they do not store a global stiffness matrix. However,
FEMWATER creates a global stiffness matrix in sparse format and modifies it when a specified pressure
boundary condition is given. A boundary condition applied to a node in one PE can generate changes for the
stiffness matrix stored in neighboring PE’s. This can lead to significant communication times. Deciding how to
handle the elements that cross PE boundaries is of critical importance to getting good performance.

4. Updating. Updating the ghost nodes using MPI can give inconsistent results on different machines. Sometimes

what works on one system completely fails on another. What is presented here is what worked well across the
different platforms.

5. Solvers. Solvers for linear and nonlinear equations are a significant research topic in and of themselves. What

will be presented here are results for a relaxation solver used on a steady-state and difficult unsaturated flow
problem.

6. Data Types. FEMWATER runs in double precision mode on a workstation. Getting the MPI to work correctly
on multiple platforms requires the use of data types that will be described.

1. Introduction

1.1 Description of FEMWATER

FEMWATER (Lin, Richards, Talbot, Yeh, Cheng, Cheng, and Jones, 1997) is a legacy unstructured grid,
finite element code that models groundwater flow and transport. The flow can be unsaturated, so added to the
geometric complexity is a system of nonlinear equations to solve at each time step. Data files for FEMWATER are
typically generated from the DoD Groundwater Modeling System (GMS) (Groundwater Modeling Team, 1998), and
they include a geometry file, a boundary condition and parameter file, and a super file containing file names.

1.2 Challenges

 When starting from scratch, it is challenging to obtain good scalability in unstructured finite element
models. It is even more difficult to parallelize older existing codes such as FEMWATER. If done the wrong way,
the results of scaled speed-up tests can be very discouraging. There are several factors that can cause poor results.
These include grid partitioning, the preparation program, boundary conditions, sparse matrix storage format, ghost
nodes, border elements, updating, solvers for linear and nonlinear equations, and data types. All these issues were
addressed in the parallelization of FEMWATER with excellent results, and these items will now be discussed in
greater detail.

2. Parallelization of FEMWATER

 The techniques used to successfully parallelize FEMWATER are now described in more detail. Only flow
modeling will be discussed in this paper.

2.1 Grid Partitioning

Partitioning the grid so each PE has roughly the same load is critical for good performance. METIS
(Karypis, 1998) was chosen as it takes only a few seconds to run and is readily available. Table 1 shows results for
the steady-state problem for 4, 8, 16, and 32 PE’s where a block partition was compared to a METIS partition for 4,
8, and 16 PE’s. The block partition is excellent, but METIS consistently out-performed it.

2.2 Preparation

The basic paradigm is to change the original FEMWATER code as little as possible. Therefore, a
preparation code must be written to start with the original input files and create input files for each PE that look the
same as the original files but have only the data needed by each respective PE. This preparation program can take
lots of time to run on a singe PE, and it can also get involved with lengthy sorting. However, when run in parallel
and with care taken to keep track of local, ghost, and global node and element numbers, the preparation code can run
very efficiently. Table 2 gives times for 4, 8, and 64 PE’s. Less than one minute for 1,000,000 nodes is excellent as
unsaturated flow problems can take hours.

 The preparation process consists of: (1) determining the local, global, and ghost node and element numbers
for each PE and writing each PE a file: (2) writing a geometry file for each PE that looks like the original: and (3)
processing and writing a parameter and boundary condition file for each PE that looks like the original.

2.3 Boundary Conditions, Sparse Matrix Storage Format, Ghost Nodes, and Border Elements

Many recently-developed FE programs apply boundary conditions at the element level, so they do not store
a global stiffness matrix. However, FEMWATER creates a global symmetric stiffness matrix in sparse format and
modifies it when a specified pressure head boundary condition is given to maintain that symmetry. Thus, a
boundary condition applied to a node in one PE can generate changes for the stiffness matrix stored in neighboring
PE’s. Figure 1 shows what happens to the [K]{h} = {Q} system of equations when a six-node problem is partitioned
into two parts for two PE’s when having pressure head, h = h0, specified at node 3. The terms in italics are not
actually stored. Row 3, column 3, and the right-hand side are modified. This can lead to significant communication
times as it can cross several PE boundaries. The solution that leads to no addition of parallel code in the process of
applying boundary conditions is correctly handling the ghost nodes and border elements where nodes of that element
belong to different PE’s (see Figure 2). First, the system of equations shown in Figure 1 is assembled one element at
a time, so assemble the border elements in both PE’s. Next, the preparation program outputs a file identical to
FEMWATER format for the parameter and boundary condition data. In this process keep boundary condition data
for both the owned nodes and ghost nodes. For the nodes owned by the respective PE, all boundary conditions will
then be done correctly. This is because the stiffness matrix only contains non-zero terms for neighboring nodes.
One would first think that doing the element twice is very inefficient, but it is actually “free” because, as seen in
Figure 2, rather than PE 0 doing six elements and PE 1 doing three, both PE 0 and PE 1 assemble six elements,
giving a perfect load balance. FEMWATER now works without barriers, and the solver only works on the owned
nodes by the respective PE’s before updating the shared data.

Table 1. METIS versus Block Partition for the T3E
 Grid Size No. of PE’s Solver Iterations Time (sec) Scaled Speed-Up (%)

Block Partition 50 X 50 X 25 4 1148 134.0 ~
METIS 50 X 50 X 25 4 1150 133.6 ~

Block Partition 50 X 50 X 50 8 1160 147.1 91.1
METIS 50 X 50 X 50 8 1163 139.5 95.8

Block Partition 50 X 50 X 100 16 1166 145.1 92.4
METIS 50 X 50 X 100 16 1168 144.2 92.6

Block Partition 50 X 100 X 100 32 1173 149.5 89.6

Table 2. Preparation Program Times
Grid Size No. of PE’s Time (sec)

50 X 50 X 25 4 4.3
50 X 50 X 50 8 7.0

100 X 100 X 100 64 39.6

1PE

0PE

hkQ
hkQ
hkQ

h
hkQ
hkQ

h
h
h
h
h
h

k
kk
kkk
0001

kkk0k
kkk0kk

1PE

0PE

0366

0355

0344

0

0232

0131

6

5

4

3

2

1

66

5655

464544

26252422

1615141211

???

?
?
?

?

?
?
?

?

?

?
?
?

?

?
?
?

?

?

?
?
?

?
?

?

?
?
?

?

?
?
?

?

?

?
?
?

?

?
?
?

?

?

?
?
?
?
?
?
?

?

?

?
?
?
?
?
?
?

?

?

???

56462616

452515

2414

12

kk0kk
k0kk

0kk
00

k

Figure 1. Specified Head Boundary Condition

PE 0

PE 1
Border Elements

Ghost Nodes for PE 1

Ghost Nodes for PE 0

Figure 2. Ghost Nodes and Border Elements

2.4 Updating

 MPI behaves remarkably differently on different systems. After trying several different ways to update
information for the ghost nodes from other PE’s, the code in Ta ble 3 was chosen as it works well for both the T3E
and SP. Sorting the ghost nodes in each PE allows ghost data to be received in consecutive order.

2.5 Solvers

 The solver is critical to the successful parallelization of any implicit numerical code. T able 1 shows good
results for the steady-state problem. The solver used here is a modified alternating direction relaxation method.
Note that the scaled speed-up results are quite good. However, for 32 PE’s or less, the grid was only increased in a
direction different from the flow direction. Had the grid been increased in the direct ion of flow (+x), the number of
iterations would have increased somewhat. Experience with a multi -grid pre-conditioner to a conjugate gradient
solver on a structured grid has shown that this increase in iterations was almost nonexistent there (from 17 to 19).

Table 3. MPI Code
 Do for each sending_PE to myid
C
c Receive num values in the vector v starting at nst from
c sending_PE.
C
 Call MPI_IRECV (v(nst), num, MPI_REAL8, sending_PE, itag,
c MPI_COMM_WORLD, ireq(i), ierror)
 End do
C
 Do for each receiving_PE from myid
C
c After the data has been packed in buff, send num values to
c receiving_PE.
C
 Call MPI_SEND (buff, num, MPI_REAL8, receiving_PE, itag,
 & MPI_COMM_WORLD, ierror)
 end if
 End do
C
 Do for each sending_PE to myid
C
c Wait until the message is received.
C
 Call MPI_WAIT (ireq(i), istat, ierror)
 End do

The equivalent pre -conditioner and solver for an unstructured grid of FEMWATER is an area of further
investigation.

The unsaturated flow case is much more difficult. However, a benchmark hard -to-converge unsaturated
flow problem was also successfully solved by not completely solving the system of linear equations (100 iterations
maximum) at each nonlinear iteration. This technique led to less overall computation time and avoided the
challenge of completely solving a linear system with mate rial properties varying several orders of magnitude..
Table 4 gives results for this problem for one time step using the block partition. Note again that the scaled speed -
up results are excellent.

2.6 Data Types

FEMWATER runs in double precision mode o n a workstation and the SP, and single precision on the T3E..
What allowed the code to run correctly without change on both these systems is first REAL * 8 is used for all the
floating point variables, and REAL8 is used as the data type in the MPI calls (see Table 3).

3. Conclusion

 It is possible with careful handling of the ghost nodes and border elements to achieve good scaled
performance on unstructured-grid flow codes with a minimum of changes to the original legacy program. What pre -
conditioners / solvers work best on a given computing platform is still an area of investigation yet to be resolved.

Acknowledgments

This work was conducted by the U.S. Army Waterways Experiment Station, and was funded through the
DoD High Performance Computing Modernization Program’s CHSSI Project, EQM-3. The training provided by
Prof. Zhu, Mississippi State University, and Prof. Mary Wheeler and team, University of Texas, Austin, was very
helpful. Permission to publish this paper was given by the Chief of Engine ers, U.S. Army Corps of Engineers. The
support of SG / Cray Research and the CEWES Major Shared Resource Center are also gratefully acknowledged.

References

1. Lin, H.J., Richards, D.R., Talbot, C.A., Yeh, G.T., Cheng, J.R., Cheng, H.P., and Jone s, N.L.,
FEMWATER: A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and
Transport in Variably Saturated Media, Technical Report CHL-97-12, U.S. Army Engineer Waterways Experiment
Station, MS, July 1997.

2. Groundwater Modeling Team, GMS, http://chl.wes.army.mil/software/gms/ , U.S. Army Engineer
Waterways Experiment Station, MS.

3. Karypis, G., METIS, http://www-users.cs.umn.edu/~karypis/metis/metis.html , University of Minnesota,
MN.

Table 4. Unsaturated Flow Results for the T3E
Grid Size No. of PE’s Nonlinear Iterations Time (sec) Scaled Speed-Up (%)

121 X 5 X 81 4 114 777.1 ~
121 X 10 X 81 8 114 861.8 90.2
121 X 20 X 81 16 115 945.7 82.2
121 X 40 X 81 32 115 1015.6 76.5
121 X 80 X 81 64 118 1149.3 67.6

